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The evolution of an elliptic vortex ring
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The evolution of a vortex ring in an ideal fluid under self-induction from a flat and
elliptic configuration is followed numerically using the cut-off approximation (Crow
1970) for the velocity at the vortex. Calculations are presented for four different axes
ratios of the initial ellipse. A particular choice is made for the core size and vorticity
distribution in the core of the vortex ring. When the initial axes ratio is close to 1, the
vortex ring oscillates periodically. The periodicity is lost as more eccentric cases are
considered. For initial axes ratio 0-2, the calculations suggest a break-up of the ring
through the core at one portion of the ring touching that at another, initially distant,
portion of the ring.

Results from quantitative experiments, conducted at moderate Reynolds number
with the vortex rings produced by puffing air through elliptic orifices, are compared
with the calculations. The agreement is fairly good and it is found that a vortex ring
produced from an orifice of axes ratio 0-2 breaks up into two smaller rings. The
relevance of the results to the vortex trail of an aircraft is discussed.

1. Introduction

In recent years considerable interest has been shown in the mechanism responsible
for destroying the trailing vortex system of an aircraft. The trailing vortices, made
visible by the condensation of moisture in their cores, are observed to undergo a slow
instability: wavy disturbances grow on both trailing vortices and reach an amplitude
such that the vortices touch at the nearer points and break up into a sequence of
distinct vortex rings. The form of the rings is such that its projection onto the plane of
maximum projected area is roughly elliptic in shape. Once the rings have formed, the
vortex trail soon ceases to be visible.

The growth of waves on trailing vortices was studied analytically by Crow (1970)
who showed that small perturbations of the vortices in the form of plane waves of
sufficiently long wavelengths are unstable. Later Moore (1972) followed the growth of
symmetrical waves on trailing vortices numerically and showed that waves grow to
such an amplitude that they touch at the nearer points. Thus an explanation of the
observed looping process is to hand.

The mechanism by which the vortices break up to form vortex rings is not
understood. Nor is it clear that the rapid loss of visibility of the rings imply their

t Visiting Physiological Flow Studies Unit, Department of Aeronautics, Imperial College,
London, during the preparation of this paper.
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disintegration; care must be taken in interpreting observations which depend on the
retention of smoke particles or water droplets in the vortex cores. It is possible that the
non-circular form of the vortex ringswhich are formed is significant to the observations.
Thus it is of interest to know what happens to an initially non-circular vortex ring.

In this paper an initial-value problem is studied. Given a plane elliptic vortex ring,
it is proposed to follow its subsequent motion and deformation numerically. It will
be shown below that a non-circular ring must necessarily deform.

The choice of a vortex ring of elliptic shape is also relevant to the study of a wake of a
bird in forward flight. Photographs from Kokshaysky’s (1979) experiments clearly
show deforming vortex rings in the wake. The motion of the wings is such that in one
complete beat the bird leaves behind it a vortex ring of roughly elliptic shape in a
plane inclined at an angle to the direction of flight. Rayner (1879) has modelled such a
wake by a chain of elliptic vortex rings to estimate power consumption and mean lift
coefficients. He ignores the deformation of the rings in his calculations.

Previous numerical study of the motion of an elliptic vortex ring is due to Arms &
Hama (1965) (see also Viets & Sforza 1975) who used local induction approximation
in their calculation of the motion. This assumes that the motion of a thin vortex
filament is governed by the approximate equations

0X(s,1) b(s b(s, ) _ T
= = T /e, (1.1)

where b and p are respectively the local binormal and radius of curvature at X, a point
on the filament, and s is the arc distance along the filament. ¢ is taken to be an unspeci-
fied constant although a proper treatment of the Biot~Savart integral shows that
€ = ¢/p, where ¢ is the core radius. Thus the approximation neglects the dependence of
¢ on p and on any variations of the core size during the motion as well as neglecting
the contribution to velocity from distant parts of the vortex. The neglecting of this
contribution means that the approximation loses the Crow instability. Thus the
approximation is not satisfactory if thisimportant feature of the evolution of a vortex

filament is not to be excluded from consideration.

The cut-off theory, due to Crow (1970), provides a more accurate method of approach
and is used here to study the motion of the vortex ring. The fluid is regarded as inviscid,
incompressible and of uniform density. Wherever possible, the vortex ring is treated as
being of zero cross-section and the velocity field due to the vortex is calculated using the
Biot-Savart lineintegral. Then Helmholtz law, that in inviscid fluid vortex lines move
with thefluid, leads to an integro-differential equation for the motion of the vortex ring.

However, the Biot-Savart line m‘tegra,l diverges on the vortex ring itself. The
difficulty is overcome by means of a ‘cut-off’, the choice of which depends on the
structure of the vortex ring. The influence of the internal structure on the motion of
the vortex ring enters only through the cut-off.

A rigorous justification of the cut-off method for finite-amplitude disturbances to a
vortex has been provided by Moore & Saffman (1972).1 In the absence of axial flow in
the vortex filament, which is the case here, they show that the error in the velocity
obtained by the cut-off method is O(c%/p%). The method is described more fully later.

t The earlier justification of Widnall, Bliss & Zalay (1971) does not specify how the ¢ross-

sactional area of the vortex filament is to vary; the varlation iz negligible for infinitesimal
distortions of the vortex, but it cannot be ignored for finite-amplitude distortions.
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It may be noted from (1.1) that the velocity at a point on the vortex is approximately
inversely proportional to the local radius of curvature. Since the curvature varies along
the length of an elliptic vortex ring, the velocity will vary accordingly so that the ring
will deform from its elliptic shape as it moves. Experiments by Oshima (1972) with
vortex rings of initially lenticular shape and by Kambe & Takao (1971) with various
other non-circular initial shapes qualitatively show the deformation of such vortex
rings.

In §2, small perturbations of elliptic mode to a circular vortex ring are discussed
while in §3 the numerical procedure used to integrate the equation of motion of an
initially elliptic vortex ring is described. In §4 numerical results are presented for
vortex rings of different eccentricity and core size. The initial core size used for each
elliptic ring is that predicted by considering the impulsive motion, in a perfect fluid,
of a flat elliptic disc which is then dissolved away. This method of fixing the core size
is due to Taylor (1953) and is described in appendix A.

In §5, a quantitative experiment is described for observing the motion of an initially
elliptic vortex ring produced by puffing air through an elliptic orifice. The results of
the experiment are compared with those of the numerical calculations in § 6. Estimates
of the vortex parameters for rings produced in this way are obtained in appendix B
using a simple model (Saffman 1978) of the flow.

In §7 the relevance of the results to the vortex trail of an aircraft is discussed.

2. Linear theory

The stability of a thin circular vortex ring to small sinusoidal perturbations was
considered by Widnall & Sullivan (1973). In a co-ordinate system moving with the
velocity of an unperturbed circular vortex ring V, the perturbed ring was taken to be

X = (R+remf)e, 4 zeimie, (2.1)

where e, and e, are unit vectors in the radial and axial directions, @ is the azimuthal
angle, R is the radius of the unperturbed ring and |r|, | 2| € R. The wavenumber m
lg an integer.

On substituting (2.1) into the equation of motion (3.1) and linearizing in z and 7, it
was shown that for moderate values of m (for which it is valid to use (3.1)), for each m
the ring oscillates with an angular frequency +«,, (see Widnall & Sullivan 1973).

In the case m = 2, the two solutions corresponding to + a, can be superposed to
satisfy the condition that initially the perturbed vortex ring has a plane elliptic form.

This gives 7(t) = roc08 (aat), 2(f) = 2z,8in (a,t) (2.2)
where 7, and z, are real constants.
Using the value of a, as given by Widnall & Sullivan, it follows that the period of

oscillations 27 /a,, which depends on R and the internal structure of the vortex (i.e.
core radius and vorticity distribution), ie given by

8n? R?
T [{(4(Inc/R—A)+0-22}{3(Inc/R—A4)+ 2-23}]4, (2.3)

7(R,c, A) =

where c is the core radius and

2
4= ‘Ll.,lzf:rv’dr. (2.4)
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Here v is the swirl velocity in the core and there is no axial flow in the filament. Note
that in linearized stability theory the length of the vortex filament remains constant so
that ¢ must also be a constant (see §3 below).

The self-induced mean velocity of the ring is that of the unperturbed circular ring,

V(R,c,4) = :;11; (m%m—;). (2.5)

3. The equation of motion and the procedure for numerical integration

Suppose that in a co-ordinate system fixed with respect to flow at infinity the centre-
line of the vortex ring at time ¢ occupies the curve given parametrically by X(, ) where
£is chosen so that £ = constant always refers to the same fluid particle. Then, if the
vortex ring has circulation I, its motion is governed by

Xy LfX (X(Eo t) — X(£,1))
7 Gort) = Mf 7E &8 A |X(go,t)—X(g,t)|3dg (3.1)

where gf implies that a suitable cut-off is used to make the integral finite at £ = £,.

Following Moore (1972), the method of cut-off chosen here is that due to Rosenhead.
Thusin (3.1) the denominator in the integrand is replaced by {|X(&,, ¢) — X(&, ¢) |2+ u%}t
where  is proportional to c(£, t), the local radius of the core (assumed to be circular).
Thus g = 285 ¢ where Jy, is determined by evaluating the velocity of a circular vortex
ring using the cut-off integral and comparing it with the known exact result given by
Saffman (1970). Thus In28, = —3—A4 (3.2)
where A is given by (2.4). The crucial assumption is that x4 is independent of the geo-
metric shape of the vortex filament and depends only on the local structure of the
vortex: Thus the same value of &y as for a circular vortex ring can be used for a vortex
filament of any shape provided their local structures are the same.

Moore & Saffman (1972) show that any variation in the internal structure along the
length of the filament are smoothed out in a time which is short compared with the
time scale associated with the change in the geometric configuration of the filament.
Thus on the time scale of filament motion the core radius ¢ and the swirl velocity v are
independent of position along the vortex ring. ¢ = ¢(t) such that the incompressibility
constraint is satisfied so that, if L is the length of the vortex ring, Lc? = constant.t
Also v = v(r,t), where r is the radial distance from the centre-line of the ring, so that,
in view of the conservation of circulation,

0= (f) f)y =1, (3.3)

2mrY \c

where f is determined from the initial structure of the vortex. Thus from (2.4)

11
A=L5ﬂmh, (3.4)

so that A is a constant throughout the motion, as required.

t Leonard (1974) has considered models where the cut-off length is chosen so that volume of
local filament segment is conserved and also where the influence of diffusion of vorticity is in-
corporated in the cut-off length.
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The Lagrangian parameter § is chosen so that in a fixed Cartesian co-ordinate system
Oxyz, the vortex ring is initially given by

X(£,0) = (xcos§,bsing,0), —mw<E<m, (3.5)

where a and b are respectively the semi-major and semi-minor axes of the ellipse.

For time ¢ > 0, it is assumed that the vortex ring retains its symmetry about 2 = 0
and ¥ = 0 so that, writing X = (z,y, 2)

x(—"'l'g,t) = x("—g,t) = _x(gst) = —x(—.f,t),
y(_"'l'g:t): —y("~5:t)= —?/(5,‘)=?/("5,t):}0<5 i"
2(—m+E,t) = 2(m—£,8) = 2(§,t) = 2(-&,¢

Hence it is only necessary to follow, say, the portion 0 < £ < 4= of the ring to obtain
the shape of the whole ring.

The evolution of the vortex ring can now be determined by simply integrating (3.1)
forward in time and calculating the length of the filament at each time step to obtain
the value of u(t). However, the integrand in the cut-off integral, although it is finite
everywhere, is large in the neighbourhood of £,. For near £, (suppressing the explicit
time-dependence for convenience),

X(£) X (&) — X(§) X\ (X _
% A{IX(EO)‘—X(g)Iu,ﬂ}% (ag) "(agz)oP(E), (3.7)

where 0 implies that the quantities are evaluated at £, and

R ({1
O e BT

This would cause a loss of accuracy in evaluating the integral. To overcome this
difficulty, the equation of motion is written as

605 (7 massxgorem- () (i), 760)
+£r(%()0/\(%)0 _"P(g,t)dg. (3.8)

The integrand in the first integral is O(1) everywhere while the second integral is
elementary.

In view of the uniformity of the cross-section and conservation of volume,

(3.6)

1 n
wt) = 2nanlz- " |5 = o)™ (3.9)
where L, and c, are the respective initial values of the length and core radius of the
vortex ring. For an ellipse Ly = 4a E(e) (3.10)

where e is the eccentricity of the ellipse, e? = (a?—b2)/a?, and E(e) is the complete
elliptic integral of the second kind (see appendix A for definition).

Once the values of 4 and ¢, are given, equations (3.8), (3.6), (3.9) and (3.5) completely
specify the initial value problem and the evolution of the vortex ring can be determined
numerically. The interval (—#, 7) was divided into 4(N —1) portions by 4N —3
equally spaced grid points. The spatial derivatives were calculated using four-point
centred differences and Simpson’s rule was used to carry out spatial integration.
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Because of its stability, the fourth-order Runge-Kutta formula was used to carry out
the integration forward in time.

The calculations were carried out for four different eccentricities of the initial
elliptic ring and the results are described in the next section.

4. Numerical results

The equation of motion is made dimensionless by choosing the semi-major axis a
as the unit of length and 4ma?/T" as the unit of time. Thus the dimensionless time ¢, is
given by

r

L= ot (4.1)

Before calculations can be performed, the value of 4 in (3.2) and the initial value of
the core radius c, are needed. These depend on the process of generation of the vortex
ring. One method of generation in an ideal fluid is to give an impulse to a flat disk of
elliptic shape and then to dissolve it away. By equating the energy and impulse of the
disk to that of the resulting vortex ring, in the manner of Taylor (1953), the core size
and the circulation of the vortex ring can be evaluated. The details are pursued in
appendix A. The initial distribution of potential at the edge of the disk given by (A 2)
suggests that in the core of the resulting vortex ring the appropriate distribution of
velocity to take is

v = m, W= 0, (42)
where v and w are respectively the azimuthal and axial velocities relative to the centre
of the core and r is the radial distance from it. This implies that in (3.3) f = (r/c)}¥ so that

4=1. (4.3)

The initial core radius is given by (A 11). For the cases considered here the values are
tabulated below (table 1); the case b/a = 11is also included.

The radius of curvature p of an ellipse varies from a value b%/a at the major axis to a
value a?/b at the minor axis. The maximum and minimum values of ¢,/p are also shown
intable 1.

These values are not small as required by the cut-off theory. However, in the absence
of axial flow, the error in the cut-off approximation is of the same order in ¢,/p as in
Saffman’s (1970) formula for the velocity of a circular vortex ring. By comparing with
numerical calculations of the full equations of motion, Fraenkel (1970) and Norbury
(1973) have shown that Saffman’s formula is fairly good for values of ¢,/p which are
not small compared with unity. Thus, although no rigorous proof is available, it is
reasonable to expect that the cut-off theory will hold equally good for such values of
co/p-

In any case the results are not sensitive to the precise value of ¢,/p since the velocity
obtained from the cut-off theory depends only logarithmically on the cut-off length
and hence the radius of the core. Thus, as far as the motion of the centre-line of the
vortex ring is concerned, the results obtained here are applicable, within a small error,
to a vortex ring of the same configuration but smaller core size. Only those inferences
which depend directly on the core size will differ.
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b/a cofa (Co/P)uax = Coa/b? (€o/P)min = Cob/a?
02 0-109 2-73 0-022
0-4 0-207 1-29 0-083
06 0-287 0-797 0-172
0-8 0-347 0-542 0-278
10 0-393 0-393 0-393

TABLE 1. Predicted core-size of vortex ring produced by the process described in appendix A.

b/a N At,

0-2 41 0-:0001
0-4 41 0-001
0-6 41 0-001
0-8 21 0-002

TaBLE 2. Number of points per quadrant and time step used.

Table 2 shows the values of N and time step A¢, used in each of the cases considered.
Trial and error showed that these gave adequate accuracy. Smaller time steps were
needed with increasing eccentricity of the initial ellipse because of the rapid changes
associated with the large curvature at the major axis.

In view of the results of §2, it is anticipated that in the case of small eccentricity the
vortex ring will oscillate with a period given by (2.3). As a check on the computer
program, this was verified. In order to measure the oscillations, an amplitude B is
defined and monitored together with the variance of the points on the ring from a
plane parallel to the plane of the original ellipse and moving with the velocity of the
centroid of the ring. If I is the impulse of the vortex ring, the centroid is given by
(Saffman 1970)

X(t,) = —3§ XA XAtDys, (4.4)

where t is the unit tangent to the filament, so that for a ring which is symmetric about
z = 0 and y = 0 in Cartesian co-ordinates fixed in the plane of the original ellipse,

R = (0.0, 5§ (¢ 20—y %) a0 o

since I = I'mab is conserved. (This was checked by evaluating I at various times during
the calculations.) Then amplitude B is defined as

_4,-B,
T 4,+B, (4.6)
where -
4,) = maxl X(&,t) - X(¢,) Is

B,(t,) = min| X(£,¢,) - X(#)|.
The variance X is defined as

1 d d .
Z(tl) = m § (zdeg—y-d%:) (z—-z)"ds (47)
wherez(f,) = X.k.
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F16urE 2. Evolution of the elliptic vortex ring of axes ratio 0-8.
(a) Plan view, (b) side view, (¢) end view.

The values of 2(¢,) and B(t,) have been plotted against time in figure 1 (a, b). Initially,
when the vortex ring is flat and elliptic in shape, X is zero and B = (a—b)/(a+b).
Subsequently, Z and B oscillate in time. For ¢, > 0, Z first achieves a minimum at a
time defined as ¢, = 7,. Except in the case of b/a = 0-8 the value of the minimum is
different from zero; the difference is small but not negligible. Thus at ¢, = }7,, the
vortex ring is flat in the case b/a = 0-8 and nearly so in the other cases considered. The
numerical calculations were stopped just after ¢, = }7,.

For the b/a = 0-8 case the shape of the centre-line of the vortex ring at various
instants of the evolution is shown in figure 2. At ¢, = 37, as expected from the value
of X(47,), the vortex ring is flat. It is also elliptic in shape with the orientation of its
axes reversed. Thus in this case the vortex ring oscillates periodically since it can be
rotated through an angle of 90° to obtain the initial configuration. The time 47, is in
good agreement with the half-period of oscillation of an equivalent perturbed circular
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F1aUure 3. Evolution of the elliptic vortex ring of axes ratio 0.6.
(a) Plan view, (b) side view, (¢) end view.

o

vortex ring of radius B = 0-9a, given by }((I'/4ma?) 7(0-9a, 0-347,1)), where 7 is
a8 in (2.3).

In the other more eccentric cases considered, the vortex ring assumes complicated
forms during the evolution.

For the b/a = 0-6 and 0-4 cases, the different stages of the evolution are shown in
figure 3 and figure 4 respectively. At t, = 47, as expected from Z(}7,), the vortex ring
is not exactly flat. Nor is the shape of the vortex ring elliptic, although the orientation
of the axesisreversed asinb/a = 0-8 case. Aftert, = }7,, the vortex ring starts deform-
ing in such a way that the axes tend to attain their initial orientation. Thus, although
the vortex ring oscillates, the oscillations are not periodic in these cases. Thus a flat
elliptic vortex ring is not, in general, a periodic solution of the vortex ring configur-
ations. 7, will be referred to as the ‘apparent period’ of oscillation of the elliptic
vortex ring.
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F1aure 4. Evolution of the elliptic vortex ring of axes ratio 0-4.
(a) Plan view, (b) side view, (c) end view.

The different stages of evolution of the vortex ring in the case b/a = 0-2 are shown in
figure 5. In this case at ¢, = 0-1355 (<4 7,), the points on y = 0 are 0-214a distance
apart, which implies that the cores are touching. Since the calculations are based on
the assumption that the separation of such points on the vortex ring is large compared
with the core radius, the results at this stage may be viewed with scepticism. However,
by performing a numerical calculation with vortices in two-dimensions, in which the
core was allowed for, Moore (1972) was able to show that the Biot—Savart formula gives
roughly the correct velocity even when the cores are touching. Thus, as Moore points
out, it is expected that, while the cores will be distorted so that the cut-off length will
change, the approximations on which the present calculations are based will be reason-
ably adequate even when the cores are close to each other.

The relevance of the calculations to the real situation at the instant of touching is
difficult to assess. However, experiments, due to Fohl & Turner (1975), Oshima &
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F1aurE 5. Evolution of the elliptic vortex ring of axes ratio 0-2.
(a) Plan view, (b) side view, (c) end view.
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Asaka (1977a,b) and Oshima (1978), with colliding vortex rings suggest that since the
vortex cores, where they touch, have vorticity of oppagsite sign, viscous diffusion would
annihilate the vorticity locally. Although the actual process is complicated, the net
result would be that the vortex lines would connect on either side of the region of
contact to form two smaller rings.

It is not meaningful to continue with the numerical integration beyond the approxi-
mate instant of touching. However, in order to obtain an estimate of the nearest
distance of approach of the core centres, it was decided to carry the integration forward
in time as far as possible using the same number of points and time step. Numerical
instability sets in near y = 0 at {, = 0-15 when the two centre-line points on y = 0 are
0-014a distance apart. The instability is presumably due to this separation distance
being small compared with the grid spacings and could be remedied by using smaller
grid spacings and smaller time stép. However, this was not attempted in view of the
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F1aurE 6. Shape of the vortex ring of case b/a = 0-2 at ¢, = 0-149 (> §74).
(a) Plan view, (b) side view, (¢) end view.

dubious implication of the results at this stage. The shape of the centre-line of the ring
at {, = 0-149 is shown in figure 6.

At ¢, = §7(= 0-147), the separation of the two centre-line points on y = 0 is 0-05a.
The overall length is greater by 2 9, over its initial value so that the core size is not
significantly different from its initial value. Thus, within logarithmically small error,
it appears that an elliptic vortex ring of axes ratio 0-2 and core radius ¢, such that
¢, > 0:025a would break up into smaller rings before the apparent half-period
stage is reached.

The values of 7y = a7 ,/b for the eases considered are shown in table 3. The reason
for tabulating 7, instead of 7, is that it is less dependent on the impulse of the
vortex ring than 7. 7y is in good agreement with

r a+b
L= ( 00,1) (4.8)
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b/a N = T TL U IIL

0-8 1-213 1-212 3-935 3-925
0-6 1-220 1-217 4-522 4-506
0-4 1-290 1-244 5-564 5-425
0-2 1-47 1-432 7-383 7-142

TABLE 3. Apparent period of oscillation 7y and mean velocity 17 compared with
71, and Vg, respectively.

where 7 is given by (2.3) and ¢, is tabulated in table 1. For comparison, the values of 7,
are also shown in table 3.
It may be of interest to note that the velocity U of the centroid of the ring, defined by
= dz
U= adL, (4.9)
where z is given by (4.7), oscillates in time about a mean value U with an apparent
?riod approximately equal to 47,. A plot of U against time is shown in figure 1 (c).
is in good agreement with the velocity of an equivalent circular vortex ring,

4ma _, (a+b
Vi = T Vv (T, Co, 1) (4.10)

where V is given by (2.5). For comparison, the values of U and V,, for the cases con-
sidered are shown in table 3.

5. Experimental measurements

The elliptic vortex rings were produced by puffing air through sharp-edged elliptic
orifices of the same eccentricities as those used in the numerical calculations. Each
orifice, of semi-major axis a,, was cut in a thin plate of 14 cm diameter which was
mounted on one end of a 70 ¢m long perspex tube of the same diameter. The other end
of the tube was smoothly connected to a 8-3 cm diameter brass cylinder which con-
tained the piston (figure 7). The piston was driven, through a gearbox, by a high torque
stepping motor which was operated by a logic control circuit. With this arrangement it
was possible to provide high initial and terminal accelerations with a uniform velocity
over most of the piston stroke. The acceleration and deceleration times, the top piston
speed and the length of the stroke could be easily adjusted. In order to provide draught-
free conditions, the vortex rings were produced in a 40 x 40 x 70 cm perspex box. The
arrangement made it possible to obtain reproducible vortex rings.

The experiment consisted of hot-wire anemometer measurements to determine the
circulation and core size and flow visualization studies to determine the mean trans-
lational velocity Uy, the equivalent ring radius R, and the oscillatory features of the
vortex rings.

Glycerine smoke was used to provide flow visualization. The motion of the vortex
rings was recorded on a 16 mm ciné film at 32 frames/s and 64 frames/s. The film was
analysed to determine the characteristics of the motion of the ring. Starting from the
moment of generation, the maximum y-displacement (see figure 7), y,,, of the vortex
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Perspex box
Stepping motor
Velocity y Light
transducer . Orifice plate
Pisto
Gear box ,/Fiston Hot wire -—/
., 4 z D

Fiaure 7. Experimental set-up.

Ym (cm)
-
=

4k

Ficure 8. Plot of yp vs. distance from the orifice. In the upper half positive ya is plotted for
b/a = 0-6 caseand in thelower halfnegative ya is plotted forb/a = 0-8 case. Theunshaded symbols
O and [] refer to values obtained from a single run while the corresponding shaded symbols refer
to averaged values.

ring was recorded and Fourier-analysed. Plots of y,, for the cases 0-6 and 0-8 are shown
in figure 8; the figure also shows the average values of the y,, over five different runs.
The ends of an oscillation cycle were defined to be the times when y,, was a minimum
and the time interval between the ends of a oscillation was defined as the oscillation
time 7, to be compared with the corresponding apparent period 7, of §4.

A survey of the velocity field in a plane parallel to the plane of the orifice and at a
fixed distance from it was made by recording hot-wire anemometer signals at various
positions in the plane. At each position, several different recordings were made; for
each recording, a vortex ring was produced, checking that the piston velocity had the
same value each time. For a circular vortex ring, a few hot-wire traces are needed
(Sallet & Widmayer 1974) to obtain a qualitative description of the flow field.
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Axis position

Core position

I
0-75
t(s)

F1GURE 9. Non-dimensional voltage output from the hot-wire anemometer, placed 10 em. from
the orifice, plotted against time. ~—-—, b/a = 0-8; , bfa = 0-4.

However, in the present case the vortex ring is deforming as it moves and traces at
several positions are needed. The order of the difficulty of the analysis increases
when more eccentric cases are considered. The measurements were repeated at a
further distance from the orifice.

From the available traces, the ones corresponding to the axis of the ring and the
centre of the core were identified (see Sallet & Widmayer). For the b/a = 0-8 and
b/a = 0-4 cases, these are shown in figure 9. The core-position trace was used to deter-
mine the core size of the ring. From the axis-position trace, the velocity component u
along the z-axis can be determined (by symmetry the other components are zero).
This enables (see, for example, Didden 1977) the circulation I' to be determined:
within a closed curve C containing the vortex core, I' is found by integrating the
velocity along the z axis and closing the curve C outside the z axis at infinity where »
and v (y-velocity component, say) are zero. Thus

I'= §c(udz+vdy) = .[o u(z,y = 0)dz = .[o wUgdt, (5.1)

where the transformation dz = Uy dt has been used. From the ciné film, Uy is deter-
mined by analysing the end view of the evolution as the average of the z-velocity of the
projection on the y—2 plane of these points on the vortex ring which lie in its planes
(fixed) of symmetry. The velocity at each of these points on the vortex ring is obtained
by noting its instantaneous z-displacement and numerically differentiating it with
respect to time. The oscillatory behaviour of Uy, anticipated by the numerical
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Semi-majoraxes

Axes ratio of orifice, a, L w a R=a+}b T

by/a, = b/a (cm) (cm) (cms~!)  (cm) (om) Ce/a (emes-1)
0-8 31 0-7 117 3.38 2:95 0-33 390
06 4 14 11-8 4:44 3:55 0-31 332
0-4 4 1-2 91 4-61 3-22 0-32 370
0-2 4 0-4 40 472 2-83 0-23 196

TABLE 4. Estimates of vortex parameters predicted by method given in appendix B.

~

a R=a+1}b |4 T
by/ag=b/a (cm) (cm) Cgla (cms-1) (cm?s~l) Re=T/v
0-8 3:17 2-85 0-31 +0-07 3-0 407 2714
0-6 4:37 35 0-25+0-05 2:8 437 2914
0-4 4-28 2:95 0-29+0:05 2:7 471 3140
0-2 — — 0-26 + 0-05 3:0 211 1473

TaBLE 5. Measured values of vortex parameters.

calculations, was noticeable only in the more eccentric cases and appeared in the
form of fluctuations approximately about U (defined in §4).t

To obtain estimates of the vortex parameter it is not satisfactory to model the flow
by a uniform flow past an equivalent disk and use the method described in appendix A ;
see e.g. Sallet (1975). Instead, the estimates are obtained using a model of the flow,
given by Saffman (1978), in which it is assumed that when the flow is first set into
motion, the vortex sheet at the orifice behaves locally like a two-dimensional vortex
sheet formed at the edge of a semi-infinite plate. Then applying the similarity law for
the roll up of the vortex sheet and using the estimates given by Pullin (1978) for the
constants associated with the law, it is possible to obtain estimates of the circulation T,
the length of the axes and the core size of the ensuing elliptic vortex ring. The details
are given in appendix B and the estimates for the circulation I', the semi-major axis a,
the equivalent radius R and core size Cg for the cases considered are given in table 4.
Here L and W refer to the displacement and velocity respectively of an equivalent slug
of fluid in the perspex cylinder (see figure 7). The flux of fluid through a cross-section of
the slug is equated to the flux through the orifice. The fluid velocity in the perspex
cylinder was checked and found to be approximately uniform over the time of the
stroke. For comparison, the corresponding measured values are given in table 5 where
Re (= T'/v) is the vortex Reynolds number and ¥V = 4nUR/T.

6. Comparison of numerical and experimental results

Figure 10 shows the contrast between a vortex ring produced from a circular orifice
and that produced from an elliptic orifice of axes ratio 0-4.

For axesratiosb/a = 0-8, 0-6 and 0-4, the vortex ring was observed to oscillate in the
manner anticipated by the numerical calculations. In fact, qualitative comparisons
between some of the stills of the vortex ring from the ciné film and the computed

+ The oscillations in the mean velocity as well as in an amplitude corresponding to y., were also
observed by Oshima (1972) in the case of vortex rings produced in water from a lenticular orifice.
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FicURE 10. Comparison between an evolving vortex ring and a
non-evolving vortex ring.
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F16URE 11. The plan view of the evolution of an elliptic vortex ring of axes ratio 0-4. The order
of the sequence is from top to bottom and left to right. The top left-hand frame shows the vortex
ring just forming. The major axis of the orifice is in the horizontal direction. The film sequence was
taken at 32 frames/s.

configurations in figures 2-4 showed striking resemblence. Figure 11 shows the plan
view of the evolution of the vortex ring for the case b/a = 0-4. As may be noticed from
the figure, at the end of the first half cycle the vortex ring assumes the shape shown in
figure 4 for time 75. This shape was observed at each subsequent end of cycle for three
cycles indicating that this configuration may be a possible periodic solution of the
vortex ring. The contortions seen in the photograph in the set of frames on the far
right in figure 11 are a defect of the photography and do not indicate a short-wave
instability of the ring; the vortex ring has progressed beyond the depth of focus of
the camera. However, a short-wave instability of the type described by Widnall & Tsai
(1977) for a circular vortex ring was eventually observed for the b/a = 0-4 case;
figure 12 shows eight waves growing on the elliptic vortex ring. The pictures were
taken at approximately 1s after generation time. From Saffman’s (1978) formula
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F1eUuRrE 12. Vortex ring in the case b/a = 0-4 at the end of third oscillation showing short-wave
instability. The sequence was taken at 32 frames/s.
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Fieure 13. Plot of 7/71 against axes ratio b/a. The symbol O refers to rg/7. ($(a+b), Cg, 1);
the standard errors for these experimental values are also shown. The @ refers to
7n/7L (3(a +b), ¢y, 1). For b/a = 0-2, the corresponding times of the break-up of the ring are
shown by [J and W respectively.

(2-18) with ¢ = 0-62 and R = 2:95cm (see table 5) and using his equations (3-6), the
expected number of waves N on an equivalent circular vortex ring is N = 8 approxi-
mately. The agreement is remarkably good considering that the observed vortex ring
is not circular.

It was found that in each case considered, the oscillation time 7z had a greater value
for each subsequent cycle. This increase in #5 with time is believed to be related to the
accompanying increase in the equivalent radius of the ring observed at the end of each
oscillation cycle. For the purpose of comparison with numerical computations

atg

8= 75, (6.1)

is defined. The values of 47 for the first half cycle is compared with the corresponding
numerical values of 47, in figure 13. It is found desirable to plot 7;/7, ((a+b), Cg, 1)
and 75/7; (4(a+D), ¢y, 1), instead of 75 and 7y in view of the differences in core size
between that used in the computations and the corresponding observed value. The
results are in fair agreement in the cases b/a = 0-8 and 0-6. For the case b/a = 0-4, the
value of 7z /7; is much greater than 75/7,. However, the error margin in the value of
Tg/7 is large. This is due to the difficulty in ascertaining the value of I" as aresult of the
high fluctuations in Uy observed in this case.

In the case b/a = 0-2, the vortex ring was observed to break up into two smaller
rings as anticipated in §4, provided the Reynold’s number of the flow was high enough
(T'/v> 1300 approximately). Figure 14 shows the end view of the break-up process. The
shape of the vortex ring prior to the break-up may be compared with the configurations
shown in figure 5(c). After break-up, the two ensuing vortex rings are observed to
oscillate and travel in directions inclined at equal angles to the z axis; the size of the
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F16uRrE 15. Detailed plan view of the break-up of the vortex ring
in the case b/a = 0-2.
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angles is such that the vortex rings move almost parallel to each other. At the Reynold’s
number of the experiment, the rings were not observed to rejoin. In figure 15 individual
photographs of the plan view of the vortex ring at different stages of the break-up
process are shown.} The time of the break-up of the vortex ring is shown in figure 10;
the time of the break-up anticipated in §4 is also shown in the figure. It may be noted
that a break-up of the vortex ring also occurs in the case of a ring produced from an
orifice in the form of a narrow rectangular slit (see Kambe & Takao (1971)); the ring
breaks up into three smaller rings.

7. Discussion

By means of numerical calculations using the cut-off approximation, it has been
shown that a flat elliptic vortex ring of axes ratio, 0-8, 0-6 and 0-4 oscillates in time, the
oscillations being periodic only in the first of these cases. At the end of a half oscillation
cycle, the deviations of the shape of the vortex ring from an ellipse with the orientation
of its axes reversed becomes more pronounced as more eccentric cases are considered.
In the case of a ring of axes ratio 0-2, it is anticipated in §4 that the vortex ring would
break-up through the touching of the cores of distinct portions of the vortex ring. This
suggests that there is a critical axes ratio, (b/a)cr, 0-4 > (b/a)., > 0-2, above which an
elliptic vortex ring oscillates and below which it breaks up.

The results from experiments conducted at moderate Reynold’s number
(T'/v ~ 2000) are in fair agreement with the results of the numerical computations. The
vortex ring oscillates in the cases of axes ratios 0-8, 0-6 and 0-4 in a manner strikingly
similar to that anticipated by the numerical calculations. In the case of the vortex ring
of axes ratio 0-2, the vortex ring breaks up into two smaller rings; however, the break-
up only occurs when the Reynold’s number is high enough (I'/v > 1300 approximately).

The vortex trail of an aircraft breaks up into vortex rings as can be seen from the
photograph (figure 1) in Crow’s (1970) paper. The photograph shows that in the plane
of maximum area (the horizontal plane) the vortex rings, when they form, have roughly
elliptic shape.

Using, as approximations, the data from Crow’s paper (I' = 268 m? s~1, so that
I'/v = 1-8 x 107, core radius ¢, = 2-7m for a B-47 aircraft of span 35 m and moving at
220 ms-1), and assuming that each ring when formed has an elliptic shape with axes
ratio 0-2, is flat and lies in a horizontal plane, the results of §§4—6 suggest that each
ring would break up into two smaller rings at 107s after the initial ring formation;
here the influence of other vortex rings in the trail is neglected. Since a vortex ring in
an aircraft trail, when formed, is not flat and since the axes ratio appears from the
photograph in Crow’s paper to be closer to 0-15 than 0-2 (also the size of the core is
comparatively much smaller than that used in the calculations and observed in the
experiments) it is expected that the actual break up of the vortex ring would occur at
an earlier time.

Not enough information is available in the photograph. However, on comparison
with figure 5, it appears that the break-up may occur 30-40s after the initial ring
formation.

t The photographs in figure 16 may be compared with figure 8 of Oshima & Asaka (1977a)
which show the ‘ reverse’ prooess in which two small circular vortex rings combine to form one
large ring of roughly elliptic shape.
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Appendix A. Initial core size used in the numerical calculations
A process of generation of a vortex ring in a perfect fluid by an impulsive motion and
subsequent annihilation of a flat elliptic disk is considered here (cf. G. I. Taylor 1953).
Suppose in Cartesian co-ordinate system, the edge of the disk is given by
z?

+b_3= 1 (ay > by). (A1)

Then if the disk is moved impulsively from rest at speed U normal to its plane, the
velocity potential at the disk is given by
Ubo x: 9y

o= (-2 (A

where
et= (25— °), E(e) = f (1—e2sin20) d6,
a3 0

are respectively the eccentricity of the ellipse and elliptic integral of the second kind.
The kinetic energy of the flow is given by

-3

_ 2ma bUs

3E(e) (A 3)
and the impulse is given by
I aTy
P=au
41mob’U
= T3E() * (A 4)

If now the disk is dissolved away, a finite vortex sheet is left behind, the vortex lines
being ellipses of the same axes ratio as the disk. Writing z = cr,cos0, y = dr,sin §
(0 <r, <1, —m < 0 < ), the circulation of the portion (r,, 1) for any fixed @ is, from
(A 2),

2U0b,

T -7 (A 5)

This configuration cannot persist because the self-induced velocity is infinite at r, = 1.
The vortex elements respond in such a way that the stronger vortex lines near r, = 1
tend to roll up the weaker parts near r, = 0 round them. Thus the vorticity tends to
concentrate in an elliptic ring of major axis  and minor axis b, say, and of circulation I'
given by

2Ub,

I'=%e-

(A 6)
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The impulse I and kinetic energy 7' of a vortex filament are given by Moore & Saffman
(1972) as

——&XAtds
2
T= ff{r [ns"’ 2+A4+ px"”’] XAV, t)}ds

where p(s) is the radius of curvature, X is as in (3.1) and V, is approximately given by
the right-hand side of (3.1) less a velocity of a circular vortex ring of radius p and lying
along the osculating circle at X. For an elliptic vortex ring, therefore

I=1I, = 'nabk (A7)

T="T,= F_;“ [(m (ﬁ“”_’*) —1 +A) E(e)—(1— ;ez)K(e)] (A 8)

o

and

where K(e) is the elliptic integral of the first kind.
Following Taylor (1953), it may be assumed that

Tp=Tsp Ip=1Ig (A9)
so that using (A 6), we have
ab = §agb, (A 10)
and core radius ¢, is

2
co=8(ab)iexp[—2ﬂ—wi—l+A—(1 e?) Eie;] (A11)

Appendix B. Estimate of vortex parameters using Saffman’s (1978) model

Estimates of the circulation I, the core radius ¢,(=Cjy) and the size of the elliptic
vortex ring generated can be obtained in the manner suggested by Saffman (1978) for
circular vortex rings. Here it is assumed that when the flow has just been set into
motion, and the vortex sheet is of small extent and close to the edge, it behaves like a
two-dimensional vortex sheet formed at the edge of a semi-infinite flat plate lying
along z = 0, » > 0 (see figure 16a, b). Initially the velocity potential is given by

¢ = —artcosfy (B1)

where r = (n? +2?)} and a is determined by matching to the flow far from the edge. For
flow through an elliptic orifice of semi-major axis a, and semi-minor axis b, in an
infinite plane, the normal velocity V, at the orifice is given by Lamb (1932, p. 151).
Near a point (z,, y,) on the edge of the ellipse, this is approximately

J2A|n|?
a, b3 (1 —e2 cos? §,)t

where 4774 is the flux through the hole and e is the eccentricity of the ellipse. By
comparing this with
1%

T X ly=n’

r=|nl
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Fiaurr 16.

an estimate of « can be obtained. However, a varies along the edge of the orifice which
is undesirable. Thus an average value is taken

i ds ¥
f y2| 3|6
a=2lnp | 25 dsde - _21:/_":% , (B 2)
f il da ao gE (e)
. |28

Then for small times, the vortex sheet which appears at the edge depends on a and ¢
only. Its centre (N,, Z,), circulation I'(r,) about a small circle centred on the vertex
of the spiral and total circulation I' shed from the edge is given by

N = Cl(at)g, Z, = 02(‘”)’, L(r) =c¢ ar‘{,}
I' = ¢ atth,

where ¢, ¢4, ¢3 and ¢, are constants (estimates obtained from Pullin’s (1978) calculations
are ¢, = 0-08, ¢, = 0-34, c; = 4-08, ¢, = 2-40).

If the piston stops moving at time ¢ = W/L where W is the velocity of the piston
and L is the displacement, the rolled-up vortex sheet breaks away from the edge of
the orifice. The semi-axes, a and b, core radius Cy, and circulation I' of the ensuing
vortex ring are then given by

al\} o\ }
a=a°+01 —W' N b=b0+cl —W- ,

c2 (al\} L\}
w=3(57) . Tmet ()

Since a/b # a,/b,, the vortex ring will have a different eccentricity from that of the
orifice. However, for small values of L this change will be small. Also, the interaction
of the ring with the wall would lead to a decrease in a and b below that given in (B4)
(Sheffield 1977). Hence, for the range of eccentricities used here, this discrepancy is
ignored and a and b are taken to be

(B 3)

(B ¢)

i
- G;(ag‘i‘bo) (g)*] - ¢4(aq +bo) (ﬁé) ]
@ “0[” Sab. \W) |* 2=h|it s \W) | (B5)

From (B 1) the swirl velocity in the core is ~ 1.
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